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In the past few years kinetic theory has been used to derive equations of motion for 
rapidly shearing granular materials, and there have been empirical extensions of 
these to take into account stress transmitted by sustained sliding and rolling 
contacts between particles. The equations are complicated and solutions have been 
generated only for very simple flows. In this paper three forms for the equations of 
motion are considered ; one representing interaction by collisions only, one which is 
a high-density asymptotic form of this, and a third which includes terms representing 
the ‘frictional ’ stresses associated with the sustained contacts referred to above. 
Solutions are found for fully developed flow under gravity down an inclined plane, 
and i t  is shown that the relation between the flow rate and the depth of the flowing 
layer predicted by the first two sets of equations is not in accord with observations. 
The third form appears to eliminate much of the discrepancy, but its predictions 
have not been explored over the whole parameter space. It is emphasized that the 
form of the solutions should be studied over a wide range of operating conditions in 
order to assess the usefulness of proposed equations. 

1. Introduction 
In recent years a great deal of work has been devoted to the development of 

equations of motion for rapidly deforming granular materials, using the methods of 
kinetic theory (see, for example, the extensive review by Campbell 1990), but much 
less effort has been devoted to solving the resulting equations of motion and 
examining the solutions, over wide ranges of conditions, in relation to experimental 
evidence and intuitive expectations. Some solutions that have been published either 
do not correspond to any physically realizable situation (for example, uniform plane 
shear), or they invoke simplifications of the equations, or boundary conditions which 
are unlikely to be justified. Others represent complete solutions, but have been 
computed for only one, or a small set of parameter values or operating conditions. 
For various equations of motion that have been proposed it would, therefore, be 
valuable to generate solutions representing measurable responses of some real 
experimental apparatus over a wide range of operating conditions, so as to assess 
whether the equations are at  least able to predict a reasonably correct pattern of 
behaviour. 

This is the objective of the present work, the apparatus in question being an 
inclined plane down which a layer of granular material flows under gravity. Solutions 
for fully developed flow will be obtained for three different sets of equations of 
motion. The first is the set of equations obtained by a formal application of the 
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methods of kinetic theory to a granular material whose grains interact entirely 
through slightly inelastic collisions. The form of these equations is by now well 
established, with only minor differences remaining between different authors. (To be 
specific, we use the equations of Lun et al. 1984.) The second is an earlier set of 
equations derived by Haff (1983) using heuristic arguments, again based in kinetic 
theory but appropriate only a t  high concentrations. With a suitable choice of certain 
undetermined parameters in these equations they can be made to match the high- 
density limit of the equations of Lun et al. The third set of equations studied is an 
extension of those of Lun et al. to account, rather crudely, for the fact that particles 
can also interact by forces transmitted a t  points of sustained sliding or rolling 
contact. This mechanism of stress transmission is modelled simply by adding extra 
terms to the stress tensor to represent a Coulomb material; a device originally 
introduced by Savage (1983) and later used by Johnson & Jackson (1987) in studies 
of plane shear in a horizontal layer, and by Johnson, Nott & Jackson (1990) for flow 
down an inclined plane. 

It will be shown that the purely collisional theories (i.c. the first and second above) 
lead to relations between the depth of the flowing layer and the flow rate which 
appear to be unrealistic, based on the experimental evidence presently available, 
while the additional terms introduced in the third theory seem able to overcome this 
difficulty. 

2. Equations of motion 

continuity equation 
There are three equations of motion, which take the following form. First a 

where p is the bulk 
momentum balance 

density and 

DP -+pV.u = 0, 
Dt 

u the velocity of 

Du 
Dt 

p- = p g - V - a ,  

( 1 )  

the flowing material. Second a 

(2 ) 

where g is the specific gravity force and a denotes the stress tensor. Finally, a balance 
on the pseudo-thermal energy of random motion of the particles, which takes the 
form 

3 DT 
5p- = - V . q p , - a : V ~ - I .  

Dt (3) 

Here T denotes the ‘particle temperature’, T =h2, where v 2  is the mean-square 
speed of the fluctuating component of the particle velocity, qPT is the flux vector of 
pseudo-thermal energy, and I is the rate of dissipation of pseudo-thermal energy by 
inelastic collisions, per unit total volume. In  all the above equations D/Dt denotes 
the substantial derivative following the particle motion. The second term on the 
right-hand side of (3) represents the rate of generation of pseudo-thermal energy by 
working of the stress. 

The literature contains a number of closures of these equations derived using the 
methods of the kinetic theory of dense gases. In earlier publications (Johnson & 
Jackson 1987; Johnson et al. 1990) we have used a slightly modified form of the 
closure of Lun et al. (1984), and for consistency this will be retained in the present 
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work. The stress is then written as the sum of collisional and kinetic contributions, 
a = a, + ak, where 

64pv 
0, = 4pp T7v2g0 l- [1+%(37- 2 )  vsol S - W b  [W+ ( V . 4  4 (4) 

15(2 - 7) 
and 

Here S is the deviatoric part of the rate of deformation tensor for the velocity field 
u and / denotes the unit tensor. Also pp is the intrinsic density of the particles, v is 
the solids volume fraction, and 7 = +( 1 + e ) ,  where e is the coefficient of restitution for 
collisions between pairs of particles. go is the radial distribution function, whose form 
is defined below, while p and pb are the effective shear and bulk viscosities for 
perfectly elastic particles, given by 

where m and d are the mass and diameter of a particle, respectively. The collisional 
and kinetic contributions to qPT are 

1274 v 
4 c  = -5 { [1+y72(47 -3)vgo +& (41 - 337) vvg,,] V T  

and 

(7) 
d T 
dv 

qk = -2{ [ 1 + %2(47j - 3 )  vgo] V T  + %(27 - 1) (7 - 1) - (v2go) ; V v }  , 

where h is the thermal conductivity for elastic particles a t  low concentration and hi 
is the thermal conductivity for inelastic particles, given by 

75m( T / x ) i  8h 
~ ( 4 1 - 3 3 7 )  * 

, A, = 64d2 
A =  

Finally, the rate of dissipation of pseudo-thermal energy, per unit volume, is given 
by 

In the above equations the radial distribution function is taken to be 

1 

1 - ( V / V , ) t  ’ go = 

which diverges as the volume fraction approaches its maximum value vo, thus 
ensuring that the stress also diverges in these circumstances. 

The above constitutive relations are valid only when the coefficient of restitution 
e ,  and consequently also 7, takes a value close to unity. Then it is found that 7 can 
be replaced by unity everywhere except in the term 1-7 in (8), thus simplifying the 
algebra without significant effect on most of the computed results. 
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An alternative set of constitutive relations, based on kinetic theory but valid only 
for volume fractions near uo, was derived by Haff (1983) using heuristic arguments. 
These take the following form: 

tpdv2 V 
Q = - / - 2 q p d 2 - S ,  

S S 

v3 1 = y(1 - e 2 ) p - ,  
s 

(9) 

where s is the mean separation between the surfaces of adjacent particles, t ,  q,  r and 
y are dimensionless constants of order unity, and it is convenient to write the 
relations in terms of v ,  the r.m.s. speed of velocity fluctuations, rather than the 
particle temperature T. Also, the bulk density p may be replaced by its maximum 
value po wherever it appears in these equations. Small variations in density away 
from po are then taken into account through the factor s. Haff‘s arguments do not 
give the values of t ,  q, r and A,  but it is easy to show that the constitutive relations 
of Lun et al., given above, reduce to Haffs form in the limit as v + uo if the following 
values are assigned : 

Then the Haff closure becomes the high-density limit of the closure of Lun et al. 
Both the above sets of constitutive relations are based on a physical picture of 

interactions between pairs of particles in which the time spent in contact is short 
compared with the time of free flight between collisions. However, as the volume 
fraction approaches uo particles will, to an increasing extent, be in simultaneous 
contact with several neighbours, and stress will be transmitted by contact forces at 
points of sustained sliding and rolling contact. It is very difficult to treat this 
situation a t  the microscopic level, but several empirical constitutive relations are 
available in the literature of soil mechanics. In  general they are quite complicated, 
but for plane shearing motion they all reduce to a proportionality between normal, 
N,, and tangential, T,, stresses on the planes of shear, together with an algebraic 
relation between the normal stress and the volume fraction of solids. 

S, = N,sin $, N, = N,(v). (13) 

We might expect N, to increase without bound when u+vo,  and to become zero 
when v is smaller than some limiting value urnin, and Johnson et al. (1990) used an 
expression of the following form : 

where Fr,  n and p are constants. 
The mechanism of stress generation is, in practice, intermediate between the two 

situations described above, and we presently have no method of treating this 
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theoretically. Following a suggestion of Savage (1983), Johnson et al. (1990) simply 
expressed the total stress as the sum of contributions from the separate mechanisms, 
each evaluated as though it acted alone. Thus 

= Qk+Q,+Qp,  

where a, and ag are given by (4) and (5), respectively, while the tangential and 
normal components of are given by (13) and (14) for plane shear. However, in the 
second term on the right-hand side of the pseudo-thermal energy balance (3) only the 
first two terms in the above expression for a are retained, corresponding to an 
assumption that the contribution of rolling and sliding at  multiple contacts to the 
random component of particle motion can be neglected. 

Boundary conditions at  a solid surface in contact with the shearing material can 
be found by writing balances of force and pseudo-thermal energy on a vanishingly 
thin layer of material adjacent to the wall. If u, is the velocity of the wall and u that 
of the material adjacent to the wall we define the slip velocity by usl = u-uw, and 
denote its magnitude by usl. We also define a unit vector n, normal to the wall and 
pointing into the flowing material. The tangential stress in the material adjacent to 
the wall is in the direction of usl, and its magnitude will be denoted by S. Then a force 
balance on the above thin layer gives 

S = c($‘mu,,) - +N,tan6. (3 
The second term on the right-hand side represents the frictional stress between the 
wall and the granular material sliding over it, with 6 denoting the angle of friction 
between the material and the wall. The first term represents the rate of transfer of 
tangential momentum to unit area of the wall by particles colliding with it. The first 
factor in brackets is proportional to the average momentum transferred in each 
collision, where m is the mass of a particle and q3‘ is a ‘specularity factor ’, which 
measures the fraction of the momentum of the incident particle transferred to the 
wall. ($’ is zero for perfectly specular rebound and unity for diffuse scattering.) The 
second bracketed factor represents the number of collisions per unit time on unit area 
of the wall, and c is a dimensionless proportionality constant of order unity. 
Similarly, an energy balance gives 

n-q,, = c($’muSl) u,l-a(+2) ( 1 - e i )  

Here the first term on the right-hand side represents the rate of working of the forces 
exerted at  the wall by the particles colliding with it, while the second term is the rate 
of dissipation of kinetic energy of particle velocity fluctuations because of the 
inelasticity of collisions with the wall. In this term the first factor in brackets is the 
average kinetic energy of an incident particle, the second is the fraction of this lost 
in the collision, with e, denoting the coefficient of restitution for collisions with the 
wall, the third is the number of collisions per unit time, and a is a dimensionless 
proportionality constant of order unity. For a more complete analysis of the form of 
the boundary condition, see $2.2 of Johnson et al. (1990). 

Since the closure relations of Haff ((9)-(11) above) are written in terms of v and 
8,  boundary conditions in the form of (15) and (16) are directly suitable for use with 
equations of motion based on Haffs closure. The more complete closure relations 
of Lun et al. ((4)-(8)), on the other hand, are written in terms of the particle 
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temperature T and the volume fraction v ,  so for use with them it is convenient to 
rewrite the boundary conditions in terms of these variables. using the relations 

T = ~ / d  = 1 - ( v / vo ) i .  

the second of which is valid only when s + d.  Thus (15) and (16) can be rewritten as 

c#pp vus,(37’))t 
1 - ( v/v0)i  

S =  +N, tan S 

and 
c$’pP v 4 , ( 3 T ) ~  _-  a pp v(3T)t(  1 - e t )  

n*qPT = 1 - ( v / v o ) :  2 1 - ( V / V 0 ) i  . 

The values of the dimensionless factors a and c remain to be determined, and it is 
easy to show that the choice 

makes (17) and (18) exactly equivalent to the boundary conditions used by Johnson 
et al. (1990). 

We can now envisage three different theoretical approaches to  the problem of fully 
developed flow down an inclined plane, namely : 

(a)  Equations (1) - (3) ,  with G = ak+aC, and the closure of Lun et d. (1984), as 
embodied in (4)-(8), supplemented by thc boundary conditions (17) and (18) (with 
Nf = 0 )  a t  the surface of the plane. Physically, this takes account of interactions 
between pairs of particles, and between particles and the surface of the inclined 
plane, only through the mechanism of almost elastic collisions, but it represents this 
mechanism correctly over the whole range of bulk densities. 

( b )  The limiting form of this theory for volume fractions near the maximum 
possible value, vo. The Haff closure ((9)-( 11) )  is then used, with the parameter values 
given in (12), and the boundary conditions at  the surface of the inclined plane are (15) 
and ( l6) ,  with Nf = 0. 

( c )  A theory which includes the effects of stress transmitted at sliding and rolling 
contacts. The stress tensor is then written Q = uk+ac+af,  where uf is introduced 
through equations (13) and (14), while G~ and G, are obtained from the closure of Lun 
et al. The boundary conditions a t  the surface of the plane are (17) and (18), with Nf 
given by (14). 

In  what follows (a) will be referred to as the full collisional theory, ( b )  as the high- 
density collisional theory, and (c) as the frictional-collisional theory. We shall 
compare their predictions over a range of flow rates, at different inclinations, and 
with different roughnesses of the surface of the plane. Case (b )  can be treated 
analytically, so we will start with that, then report numerical solutions for cases (a)  
and ( c ) .  

u = c = n/6v0 (19) 

3. Solution for the high-density collisional theory 
Figure 1 shows a layer of depth h in fully developed motion down a plane inclined 

at  an angle 0 to the horizontal; u denotes the velocity, which is directed parallel to 
the plane, and a coordinate z is measured in a direction normal to  the plane from an 
origin in the free surface of the flowing layer. It is convenient to measure position 
from the surface, as it simplifies the solution of the high-density collisional theory. 
For the full frictional-collisional theory the coordinate is measured from the chute 
surface (y = H - z ) .  Then if S and N denote the shear and normal stresses, 
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FIGURE 1.  Notation for flow down an inclined plane. 

respcctively, on a plane of constant z ,  S = pgzsin8 and N = pgzcos8 where, as 
before, p can be regarded as constant at its maximum value p,,. Using (9) to evaluate 
S and N these relation become 

v du 
s dz 

V2 
pgz cos 8 = tdp - 

pgzsin8 = -qd2p--, 

s 

and, using (10) and (11)  in the pseudo-thermal energy balance (3), we find 

Dividing (20) by (21) gives 
du t 

= --tan 8 v - 
dz qd 

and from (21)-(23) we find the following differential equation for w :  

d2v 1dv (L-Mtan28) 
-+--- v = 0, 
dz2 zdz d2 

where 

When supplemented by suitable boundary conditions, equations (23) and (24) 
determine the profiles of velocity and particle temperature in the layer. 

Setting Nf = 0 the boundary condition (15) a t  the surface of the inclined plane can 
be written 

- “’u a t  z = h  
du 
dz qd 
- - -- 

and, using (lo), (23) and (26) the thermal boundary condition (16) can be reduced to 

dv 21 
- = -(l-mtan28)- a t  z = h, 
dz d 
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I 

c 

1 ................................................................... ~ ..... ~ ............. 
1 dv 

mtan'e-I 

-~ 

d b  

.~ 

W 

~ c Wh 
d 

FIGURE 2. Illustration of the particle temperature profile and the thermal boundary condition 
for Case 1 of the high-density collisional theory. 

At the free surface, z = 0, both the stress and the normal flux of pseudo-thermal 
energy must vanish, and these requirements complete the set of boundary conditions. 

The form taken by the solution of (24) clearly depends on the sign of L-Mtan20, 
so there are two cases to consider. 

Case 1: L--Mtan20 = W > 0. 

Then, defining 6 = Wz/d ,  (24) can be written 

The relevant solution of this in the present case is v = A1,([), where I,, is the modified 
Bessel function of order zero, since v must remain bounded as [ + O .  Then it  follows 
that dv/dg+O as [ + O ,  since IA(0) = 0. Thus the condition of vanishing pseudo- 
thermal energy flux is satisfied a t  the free surface. 

The thermal boundary condition (27) can now be written as 

ldv mtan20-l  
-_ - a t  [ =  Whld,  
v d[ - (L -M tan2 0); 

and from figure 2 we see that (30) determines a unique value for h if, and only if, 

m tan2 0- 1 
O <  < 1. 

( L  -M tan2 e): 
Since the denominator is positive, these inequalities require that 
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FIGURE 3. Dependence of the depth of the flowing layer on the inclination of the plane for 
Case 1 of the high-density collisional theory. 

where 
m tan2 eo - i = (L -M tan2 oo);, 

From figure 2 we see that the depth h of the flowing layer increases monotonically 
with increasing 8, and tends to infinity as 8+B0, as sketched in figure 3. 

The behaviour of this solution is rather odd. The depth of the flowing layer 
depends only on the inclination of the plane and, in particular, it is independent of 
the flow rate of the granular material. Furthermore, the depth increases as the 
inclination increases, which is contrary to the intuitive idea that the layer should 
become shallower and the velocity greater a t  larger inclinations. The particle 
temperature increases monotonically on moving down through the layer from the 
free surface. 

The velocity profile is obtained by substituting the solution for v into (23), 
integrating, and invoking the slip boundary condition (26), with the result 

Since h is determined by the inclination of the plane, the velocity profiles for all flow 
rates are similar at  a given inclination, differing from each other only by the factor 
of proportionality A .  

The bulk density of the material is found from 8 ,  which is determined as a function 
of z by equation (21). Since v+A when z+ 0, it follows that s+ 00 at the surface of 
the flowing material, and this corresponds to zero bulk density. But the constitutive 
relations are valid only at high bulk density, so the solution is not consistent with the 
physical assumptions on which it is based, at  least in some domain adjacent to the 
surface. It is easily checked that the tangential stress vanishes at this surface, as it 
should. 

Note that there are no solutions for inclinations such that 

tan2 8, < tan2 0 -= L / M  
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c 
A 

PICURE 4. Illustration of the particle temperature profile and the thermal boundary condition 
for Case 2 of the high-density collisional theory. 

though, as we shall see, solutions do exist for the full collisional theory in these 
circumstances. 

Case 2 : L -M tan%' = - Q2 < 0. 

Defining 5 = Qz/d in this case, (24) becomes 

d2v ldv 
-+--+v = 0 
di? 5d5 

(34) 

and the solution which remains bounded as [ + O  is v = AJ,(<).  The thermal 
boundary condition (27) can now be written 

ldv - mtan20-Z 
v d g  (Mtan20-L)i 

and from figure 4 we see that this determines a unique value of h if, and only if, 

-- - 

m tan2 0-1 
(M tan2 0 - L)I  

, < 0. 

Thus, solutions of this sort exist when 

L 1 - < tan20 < - 
M m (35) 

and in this case there is no more-restrictive constraint like (32). From figure 4 we see 
that the depth of the flowing layer increases monotonically with decreasing 0, and 
tends to infinity as tan20+L/M from above, as sketched in figure 5. This is more 
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LIM tan' e I l m  
FIGURE 5. Dependence of the depth of the flowing layer on the inclination of the plane for 

Case 2 of the high-density collisional theory. 

appealing to the intuition than the behaviour found in Case 1 above, though the 
depth of the layer is still determined entirely by 8, and is independent of the flow 
rate. 5 is constrained to remain smaller than the first zero of J,, or the solution would 
contain intervals of negative o, which are physically meaningless. Also, in the present 
case the particle temperature decreases monotonically on moving down through the 
flowing layer. 

In the same way as (33) was obtained for Case 1, the velocity profile in this case 
is given by 

c" J,(Q,g/d) dt+$ J,(Qh/d) 
t tan 0 

ufzl = A - 

From the inequalities (31) and (35) it is seen that the distinction between Cases 1 
and 2 depends on the relative magnitudes of L/M and l lm. Introducing the values 
of L, M, I ,  and m given by (25) and (30) we can write these discriminating inequalities 
as 

qy(1-e2) 2 $c$' ( l -e t ) .  

Thus, Case 1 applies when collisions between particles and the inclined plane have e ,  
close to unity and a small value of q5'; in other words, when they are almost elastic 
and almost specular. This would be expected to be the case when the plane is hard 
and smooth, so we will refer to Case 1 as the 'smooth plane' case. Case 2, on the other 
hand, corresponds to a value of 9' near unity and a small value of e,; that is, diffuse 
and highly inelastic collisions between particles and the plane. It will, therefore, be 
referred to as the 'rough plane' case. 

In both cases the total mass flow rate is given by 

with s given by (21) and u by (33) or (36) for Cases 1 and 2, respectively. Thus 

6 F L M  241 



156 K .  G. Anderson and R. Jackson 

for Case 1, and the same expression for Case 2, but with I ,  replaced by J ,  throughout. 
From this we see that m cc A for small values of A ,  while ria cc l /A5 for large values 
of A .  It follows that h + O ,  both as A+O and as A+oo so, since m is bounded and 
positive for all A,  there exists some finite value of A for which m is largest. In fact, 
riz passes through a single maximum as A increases, and for each value of riz below 
this maximum there are two values of A,  and hence two solutions. It is easy to show 
that the flow is slower and denser for the smaller value of A ,  and faster and less dense 
for the larger value, though the mass flow rate and the depth of the layer are the same 
for both solutions. Thus, if we attempt to plot the mass flow rate riz as a function of 
the depth h for a plane of given inclination, the high-density collisional theory 
predicts that we will get a single line of bounded height a t  a constant value of h 
(determined by the inclination), and that each point on this line will correspond to 
two different solutions, in which the same flow rate is achieved by different 
combinations of velocity and bulk density. This is intuitively disturbing and does not 
agree with experimental observations, so it appears that the high-density collisional 
theory is of little value, in itself, for this problem. However, it is instructive to 
compare it with the predictions of the full collisional theory, of which it is a limiting 
case. 

4. High-density collisional theory, full collisional theory and 
frictional-collisional theory compared 

For the full collisional theory and the frictional-collisional theory solutions must 
be obtained numerically for specified sets of parameter values. Two cases were 
considered, corresponding to a ‘smooth plane ’ and a ‘rough plane ’, respectively, as 
defined in $3. The relevant parameter values are set out in table 1. 

Figure 6 ( a )  shows the dimensionless mass flow rate ( h *  = riL/p,(gd3)i), given by the 
full collisional theory, as a function of the depth of the layer for the case of the 
smooth plane inclined at an angle of 15”, so that tan2 8 lies between Z/m and tan2 8,. 
The curve is seen to start from the origin, rise to a maximum as h/d increases, then 
decrease again to give zero flow rate at a value of h/d just less than 18. The curve 
clearly asymptotes to a vertical line as it approaches the h/d-axis, and this is just the 
unique vertical line predicted by the high-density collisional theory. The reason for 
this behaviour can be seen from figure 6 ( b ) ,  where profiles of solids volume fraction 
as a function of depth in the layer are shown, corresponding to the points 
distinguished by circles on the curve of figure 6(a).  (Here y denotes h-2.) As h/d 
increases, the solids volume fraction profiles are seen to approach v,, (= 0.65) for all 
values of y, so the high-density approximation becomes valid. Figures 6(c) and 6(d), 
respectively, show profiles of dimensionless velocity, defined by u* = u/(ghsin 8);, 
and dimensionless particle temperature, defined by T* = T/gd cos 8. The velocities 
becomes progressively slower and the particle temperatures progressively smaller as 
h/d increases, with the last identified point on the curve of figure 6(a)  corresponding 
to a thick, ‘cold’ layer of granular material moving slowly down the plane. 

The relation between predictions of the full collisional theory and those of the high- 
density collisional theory is now plain. The simplifications introduced in the high- 
density closure cause the curve of mass flow versus depth, found from the full 
collisional theory, to collapse onto its high-density asymptote, so that it degenerates 
into a vertical line. The collisional theory predicts that there is a maximum mass flow 
rate for which fully developed flow is possible, and for each value of the flow rate 
smaller than this there are two distinct solutions, though we do not know whether 
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FIGURE 6. Predictions of the full collisional theory for flow down a smooth plane (see table 1 )  
inclined a t  an angle of 15'. (a) Relation between mass flow rate and depth of the flowing layer. ( b )  
Profiles of solids volume fraction within the flowing layer. (c) Profiles of velocity within the flowing 
layer. (d) Profiles of particle temperature within the flowing layer. Numbers on (a) correspond 
to points on ( a ) .  

Parameter 

e 

$ 
6 
# 
VO 

PP 
d 
Fr 
P 
n 

Smooth plane 

0.91 
0.91 

28.5' 
12.3' 
0.25 
0.65 
2.9 g/cm3 
0.1 cm 
0.5 g/cm s2 
2 

Rough plane 

0.91 
0.80 

12.3" 
28.5' 
0.85 
0.65 
2.9 g/cm3 
0.1 cm 
0.5 g/cm s2 
2 

5 

TABLE 1 .  

5 

6-2 
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FIQURE 7. Predictions of the frictional-collisional theory for flow down a smooth plane (see table 
1) inclined a t  an angle of 15'. (a) Relation between mass flow rate and depth of the flowing layer. 
( b )  Profiles of solids volume fraction within the flowing layer. (c) Profiles of velocity within the 
flowing layer. ( d )  Profiles of particle temperature within the flowing layer. Kumbers on (b-d) 
correspond to points on (a).  

both represent stable configurations. Experiments, on the other hand (Johnson et al. 
1990) usually show a monotonic increase of depth with flow rate over the whole range 
of flows studied, and no evidence of a multiplicity of the type just described or an 
upper bound for the depth. Though it is conceivable that behaviour of the type 
predicted by the collisional theory would be found if the experiments were extended 
to higher feed rates, there is no evidence of it in the work cited above nor, so far as 
we know, elsewhere in the literature. 

It remains to compare the predictions of the collisional theory with those of the full, 
frictional-collisional theory for which u = uy + uc + af. The results for this case are 
shown in figure 7 .  Comparing figure 7 ( a )  with figure 6(a)  it is seen that the inclusion 
of the frictional contribution to the stress has profoundly changed the relation 
between flow rate and depth. At high flow rates the depth now continues to increase 
with increasing flow rate : the curve does not dip back to meet the axis m* = 0, as in 
figure 6 ( a ) .  At the same time there is a new feature, in the form of a maximum and 
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FIGURE 8. Predicted profiles of normal stress within the flowing layer for flow down a smooth plane 
inclined at 15". (a )  From the full collisional theory. ( b )  Sum of collisional and kinetic contributions, 
from the frictional-collisional theory. (c) Frictional contribution, from the frictional-collisional 
theory. Kumbers on (a) correspond to points on figure 6 ( a )  and those on (b ,  c) to figure 7(a).  

minimum of m* traversed successively by the curve as the depth increases. For 
values of h below that corresponding to the maximum the curves of figures 6 (a) and 
7 (a )  coincide closely, and comparison of figures 6 (b )  and 7 ( b ) ,  6 ( c )  and 7 (c)  and 6 ( d )  
and 7 ( d )  shows that the profiles of volume fraction, velocity, and particle temperature 
are also in close agreement. Thus, the added frictional terms do not make themselves 
felt in this interval. Beyond the maximum of a* in figure 7 ( a )  the curve diverges 
sharply from that of figure 6(a) ,  and the profiles of volume fraction, velocity, and 
particle temperature also become quite different for the two cases. The short, 
descending arc of the curve in figure 7 (a )  represents a sequence of solutions for which 
there is a rapid transition from flows with smooth velocity profiles, extending 
throughout the depth of the layer, to a quite different situation in which most of the 
layer consists of a high-density block of material that slides, without shearing, over 
a thin shear layer immediately adjacent to the surface of the plane. The transition 
between the two types of solution is virtually complete by the minimum of the curve 
in figure 7 (a) .  Beyond this point the mass flow rate increases, primarily by adding to 
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FIGURE 9. The relation between the predictions of the full collisional theory and the 
frictional-collisional theory, illustrated by the dependence of flow rate on depth for each of these 
theories, and for three intermediate cases. 

the depth of this sliding block without changing its velocity very much, and this 
process can apparently be continued indefinitely, generating a sustained increase in 
mass flow rate with the depth of the layer. Despite the fact that the layer is not 
shearing through most of its depth, figure 7 ( d )  shows that its particle temperature 
does not vanish, but increases exponentially on moving down from the surface. 
(Some of the profiles shown in figure 7 are clearly of dubious physical significance; 
for example, the thinnest layers are little more than one particle diameter in depth, 
yet substantial variations in velocity and density are shown within the layer. Here 
and elsewhere we include such results, for what they are worth, as predictions of the 
continuum theories, leaving aside the important question of whether a continuum 
description is appropriate in such cases since our purpose is to compare the different 
continuum theories.) 

It is also interesting to compare the stress profiles for the collisional and the 
frictional-collisional theories. Since the shear stress is simply proportional to the 
normal stress, through the sine of the angle of friction, it suffices to plot normal stress 
profiles, and these are shown in figure 8. Figure 8 ( a )  gives the normal stress for the 
solutions based on the collisional theory : it is seen to build up with increasing depth 
so as to balance the weight of the overburden of material between the free surface 
and the point in question. The small deviations from a linear buildup of normal stress 
with depth reflect the changes in bulk density within the layer. For the 
frictional-collisional theory figures 8 ( b )  and 8 ( c )  show the contributions from sk + u, 
and from of, respectively, to the total normal stress. At large values of the depth, 
where most of the layer consists of a sliding block of material of almost constant bulk 
density, the dominant contribution to the stress is frictional, and it increases linearly 
with depth, as it must. Near to the inclined plate the frictional contribution to the 
stress decreases, and i t  is replaced by an increasing collisional contribution generated 
by the shearing within the layer of material adjacent to the plate. 

The 'switchback' in the curve of figure 7 ( a )  relating mass flow rate and depth 
should give rise to a hysteresis phenomenon in experiments where the flow rate is 
controlled, with a sudden increase in depth at  the upper end of the switchback as the 
flow is increased, and a sudden decrease in depth at  the lower end as the flow is 
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FIQURE 10. Predictions of the frictional-collisional theory for flow down a rough plane (see table 1 )  
inclined at an angle of 19.5'. (a)  Relation between maas flow rate and depth of the flowing layer. 
( b )  Profiles of solids volume fraction within the flowing layer. (c) Profiles of velocity within the 
flowing layer. ( d )  Profiles of particle temperature within the flowing layer. Numbers on (M) 
correspond to points on (a). 

decreased. At least one observation of jumps in depth, which appear to correspond 
to these predictions, has been reported in the literature (see figure 8 of Johnson et al. 
1990). 

The differences between the predictions of the collisional theory and the 
frictional-collisional theory are so profound that it is interesting to trace the relation 
between them through a sequence of intermediate cases. Thus, we can replace up, 
wherever it appears in the frictional-collisional theory, by p ,  u,, where 0 < p ,  < 1. 
Then p ,  = 0 gives the collisional theory, p ,  = 1, gives the frictional-collisional 
theory, and computed solutions for a sequence of intermediate values of p ,  will 
permit us to elucidate the link between the two. Figure 9 superimposes the computed 
curves relating m* to h/d for p ,  = 0, and 1, where pf = 0 corresponds 
to the full collisional theory and p ,  = 1 to the frictional-collisional theory, At  low 
values of the depth all the curves coincide with the corresponding curve for the 
collisional theory. As the depth increases, at some point each curve for p ,  + 0 breaks 
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FIGURE 1 1 .  Predictions of the full collisional theory for flow down a smooth plane (see table 1) 
inclined at an angle of 15.5'. ( a )  Relation between mass flow rate and depth of the flowing layer. 
( b )  Profiles of solids volume fraction within the flowing layer. (c) Profiles of velocity within the 
flowing layer. (d )  Profiles of particle temperature within the flowing layer. Numbers on (b-d) 
correspond to points on (a) .  

away from that of the purely collisional theory (p ,  = 0 ) ,  dropping first below it, then 
passing through a minimum and subsequently rising monotonically. For successively 
increasing values of p ,  the point of breakaway occurs a t  successively smaller values 
of the depth, converging on figure 7 (a) when p ,  --f 1. However, no matter how small 
the value of p, ,  it appears that  the curve for the corresponding frictional-collisional 
theory always breaks away from the curve for the purely collisional theory before 
that curve reaches the axis m* = 0, after which it rises monotonically as h increases. 

All the results presented so far refer to the case of the smooth plane. Figure 10 
shows results for the frictional-collisional theory ( p ,  = 1)  applied to a rough plane 
(whose parameter values are listed in table 1) a t  an inclination of 19.5". Comparing 
the profiles of volume fraction, velocity, and particle temperature with those of figure 
7 i t  is seen that the nature of the motion is quite different. Bulk densities are lower, 
velocities are much higher, and shear now extends much more uniformly through the 
layer, with comparatively little slip at the surface of the plane. Particle temperatures 
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are also higher, and the temperature now increases on moving up through the layer, 
so that the ‘hottest ’ part of the material is adjacent to the free surface, in contrast 
with the case of the smooth plane, where the ‘hottest’ material was confined to a 
narrow region a t  the bottom of the layer. The overall picture is one of a much looser, 
more energetic flow, with the plane acting as a sink, rather than a course of pseudo- 
thermal energy. Figure 10 (a )  shows that the mass flow rate increases monotonically 
with the depth of the layer, and there is no multiplicity like that seen in figure 6 ( a ) .  

Finally, recall that the high-density collisional theory provided no solutions in the 
case of a smooth plane with inclination such that tan2 Bo < tan2 B < L / M .  Never- 
theless, this does not preclude the existence of solutions of the full collisional theory 
in these circumstances, as seen from figure 11, which shows solutions of the full 
collisional theory for the smooth plane at an inclination of 15.5’, whose tangent 
satisfies the above inequalities. In contrast to figure 6(a),  which corresponds to an 
inclination of 1 5 O ,  the curve of riz* .us. h / d  shown in figure 11 (a )  rises monotonically. 
As h/d increases, the volume fraction profiles of figure 11 (b)  appear to be converging 
to a limiting profile which does not lie close to v,, throughout the depth of the layer, 
so the solution never approaches a limit that could be derived from the high-density 
approximation ; indeed, as we have seen, that approximation has no solution in this 
case. 

5. Concluding remarks 
Available experimental results on flow down inclined chutes indicate that the 

depth of the flowing layer increases with the flow rate (at least for high values of the 
flow) to the highest flows investigated. We are not aware of any evidence of a 
maximum in the curve of flow rate versus depth, such as the collisional theory 
predicts in the ‘smooth plane’ results quoted above, nor do there appear to be upper 
bounds on the flow rate and the depth, as would be the case if the right-hand branch 
of the predicted curve represented unstable states, and was therefore unrealizable. 
(The existence of two states for a given flow rate for the case of figure 6 ( a )  does not 
correspond to supercritical and subcritical states of flow, as discussed by Campbell, 
Brennen & Sabersky (1985). All the states shown in figure 6 (a )  are subcritical, based 
on the mean velocity.) While the number of experimental investigations is still small, 
and results from larger chutes at  much higher flow rates would be particularly 
welcome, we can conclude provisionally that the predictions of the collisional theory 
for the simplest measurable property, namely the relation between layer depth and 
flow rate, are qualitatively incorrect. The same remarks apply, more emphatically, 
to the high-density collisional theory of Haff, where the solutions contain 
inconsistencies with the physical assumptions on which the equations were based, 
and the predicted relation between flow rate and depth is absurd. 

The discrepancies at  high flow rates are eliminated when the collisional theory is 
replaced by the frictional-collisional theory, but at  lower flow rates the form of the 
relation between flow rate and depth may become more complicated. For example, 
in the ‘smooth plane’ case investigated here figure 7 ( a )  shows that there is an 
interval of multiplicity in which there are three different values of the depth, and 
correspondingly three different flow patterns, for each value of the flow rate. Johnson 
et al. (1990) recently reported some observations which are consistent with this 
prediction, provided the middle branch represents solutions which are unstable, and 
therefore unobscrvable. A hysteresis loop would then be traced on increasing and 
decreasing the flow rate over an interval including the multiplicity, and just such a 
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hysteresis was reported by the above authors in measurements on a ‘smooth base’ 
chute at one particular inclination. 

The effect of introducing the ‘frictional’ terms into the equations cannot be 
reproduced, even qualitatively, by decreasing the value of the coefficient of restitution 
in the collisional theory. It is easy to show that this does not change the form of the 
curve, shown in figure 6(a),  relating flow to depth, but (for the smooth plane case) 
it reduces the value of the depth at which the flow rate drops to zero. For the ‘rough 
plane ’ case, on the other hand, decreasing the coefficient of restitution increases this 
depth. 

It should not be assumed that the shape of the curve in figure 7 ( a )  represents the 
only type of branching behaviour predicted by the frictional-collisional model. Nott 
& Jackson (1992) have recently shown that more complicated types of behaviour are 
possible for other values of the parameters, and that the pattern of branching 
changes radically for quite small changes in these parameters. There has been no 
extensive exploration of branching behaviour over the parameter space. 

Finally, the velocity profiles of figure 7 ( c )  , predicted by the frictional-collisional 
model, appear to be consistent with some recent results of direct dynamic simulation 
of flow of granular material under gravity down a long ‘smooth ’ plane (0. M. Walton 
1991, private communication), and the profiles of velocity, volume fraction and 
temperature for the collisional theory, shown in figure 6, are qualitatively similar to 
the simulations of Campbell & Brennen (1985). 

This work formed part of a programme supported by the National Science 
Foundation under Grant No. CBT-8504201. The first author also wishes to 
acknowledge personal support in the form of a National Science Foundation 
Graduate Fellowship. The second author was a visiting Professor a t  Rice University 
while most of the work was in progress. He is grateful for the opportunity this 
provided for uninterrupted study. 

Appendix. Explicit solution for locked flow 
The full system of equations governing flow down an inclined plane consists of a 

set of nonlinear partial differential equations which must be solved using some 
numerical method. It is practically impossible to extract information about the 
flowing system without a full solution of the equations. However, there is one 
limiting case of practical interest for which the pertinent details of the solution may 
be obtained explicitly; namely the case of ‘locked’ flow. This is seen in figure 7(a-d) 
for large values of the layer depth, and it is apparent that  the volume fraction is 
approximately constant throughout the layer, while the velocity gradient is non-zero 
only in a thin sublayer adjacent to the plane surface. Utilizing these two observations, 
the equations describing the system may be simplified to yield an explicit solution, 
which can be used as a check for the full solution and to estimate flow rates and other 
information without the use of a computer. 

We begin with the complete frictional-colllisional equations in the notation used 
by Johnson et al. (1990) : 
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d dT* 
dr[f"(v)T*iT] +ABfz(u) T*i -Alf5(v) T*i = 0. 

The first two equations are the integrated form of the momentum equations, while 
the third is the pseudo-thermal energy balance (equation (3)) in the present paper, 
with a term in dv/dY neglected (Johnson et al. 1990). The remaining boundary 
condition at the free surface ( Y  = 1 )  is simply 

dT* 
dY 
-- - 0, 

while the conditions at  the plane surface (Y = 0) take the form 

Idu* sin$ tan S 
fz(v) T*r-+-Nt(v) = Dfz(v)f8(v) T * h z +  ~ * ( v ) ,  (A 5) 
( A B ) ~  d Y  B 

dT* 
dY 
- = ACf,(u) T* - AzBDf,(V) u : ~ .  

The functions fi-f8 are given in table 2. We use a simplified form of these functions, 
differing from those used by Johnson et al. in that the forms given here hold for 
go 9 1 ,  which is indeed the case for dense 'locked' flows. This assumption breaks 
down only for very low-density flows of the sort not considered here. The 
dimensionless spatial coordinate, Y, and frictional normal stress, v, are defined by 

Y NAv) Y = -, * ( u )  = 
h pp gd cos B 

and the dimensionless parameters A ,  B, G,  and D are given by 

With the system thus defined, we take advantage of the facts that the solids volume 
fraction, v, is roughly constant and that the velocity gradient is zero in the bulk of 
the flow to reduce (A 2) and (A 3) to the form 

A = h/d ,  B = tan8, C = ( 1 - e t ) ,  D = $'. (A 8) 

-N;c(v) sin $ =AlvdY+-(-) ,  x v ( 1 )  
B 6 vo 

d 
dY[ %] f3(v)- T*i- -A2f5(v) T*i = 0. 



166 K .  G .  Anderson and R. Jackson 

Equation (A 10) may then be solved directly to give the particle temperature profile : 

where 

1+exp[-2h] 
{ 1 +exp [ - 2 4 1  - Y ) ]  T*g = T$ exp ( - AY) 

and where TO* is the dimensionless particle temperature a t  the plane surface. The 
term in braces in (A 11) is only significant close to the free surface and may be 
neglected in the lower two thirds of the flowing material, yielding the simple 
exponential profile 

From the full solutions shown in figure 7(d) it is apparent that this exponential 
solution is valid even where the velocity gradient is non-zero near the surface of the 
chute. Based on this observation, we then use the grain-temperature profile from 
(A 13) in (A 5) and (A 6) to find the particle temperature and the slip-velocity at the 
base of the plane: 

T* = T,* exp (-$hY). (A 13) 

where we have used the fact that 

It is then possible to use the full form of the momentum equations near the plane 
surface to obtain the velocity gradient in the region near Y = 0:  

By using (A 17) and (A 13) we may then calculate the position YL a t  which the 
flowing material 'locks' and the velocity gradient becomes zero. The result is a 
nonlinear equation which may easily be solved by successive substitution when 
written in the form 

It is then straightforward to integrate (A 17) from Y = 0 to YL to obtain the velocity 
uL in the bulk of the material 

sin # 
B 
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Numerical 
Quantity solution 

V 0.567 
T: 0.1192 
4 0.4256 
YL N 0.07 
4 0.4601 
m* 4.058 

TABLE 3. 

Explicit 
solution 

0.566 
0.1195 
0.4236 
0.0744 
0.4445 
3.980 

where 
TE = 2’: exp ( -@YL). 

The mass flow rate may then be computed either by considering all of the material 
to be moving with velocity uL or by using a simple trapezoidal formula to integrate 
the layer between Y = 0 and YL. The error in using the former method over the latter 
is less than 1 %. Thus a simple calculation gives the flow rate of the moving material : 

All of the results above are based on the assumption that the solids volume 
fraction, v ,  is known. Thus, it remains only to estimate v to calculate all the 
important characteristics of the ‘locked ’ flow. This estimate must be made using the 
one piece of information that has not yet been utilized; that is, the functional 
dependence of the normal stress on the volume fraction. We could use either of the 
momentum equations to solve for v, but it is easier to use the form (A 9) which 
involves only the volume fraction and the normal stress. We take the expression for 
the normal stress used by Johnson et al. (1990) : 

where 
Fr* = Fr/ (ppgd) .  

(A 21 a )  

(A 21 b )  

It is necessary to choose a value of Y a t  which to solve (A 9). For the present, we have 
chosen to integrate this equation over the entire layer to calculate an ‘average ’ value 
of v .  The resulting nonlinear equation may again be arranged in a form which is easily 
solved by successive substitution : 

With the volume fraction then known, all of the other quantities may be calculated. 
Finally, to illustrate the accuracy of this explicit solution, we compare the results 

of these calculations with one of the full numerical solutions shown in figure 7 ( a d ) ,  
that corresponding to a depth h/d = 9.89. The important quantities are compared in 
table 3 and the particle temperature profiles given by (A 11) and (A 13) are compared 
to the exact solution in figure 12. It is apparent from table 3 that even the quantities 
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FIGURE 12. Particle temperature profile calculated from the frictional-collisional theory for a layer 
with h/d =9.89  flowing down the smooth plane a t  an inclination of 15O, compared with 
approximate profiles obtained from equations (A 1 1 )  and (A 13), respectively. 

that differ most from the full numerical solution do so by less than 5 YO. Likewise, the 
simple particle temperature distributions given by (A 11) and (A 13) give a good 
representation of the actual particle t,emperature profile. Based on comparisons such 
as these, we may be satisfied with the validity of the approximations made in 
deriving this explicit solution. This approximate solution is valid for flows in which 
the density of the bed is high and nearly uniform. It is hoped that the solution given 
here will make the theory more tractable for 'locked ' flows since it removes the need 
for computer solutions in determining important characteristics of the system. 
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